Stereo obstacle detection for unmanned surface vehicles by IMU-assisted semantic segmentation
نویسندگان
چکیده
A new obstacle detection algorithm for unmanned surface vehicles (USVs) is presented. A state-of-the-art graphical model for semantic segmentation is extended to incorporate boat pitch and roll measurements from the on-board inertial measurement unit (IMU), and a stereo verification algorithm that consolidates tentative detections obtained from the segmentation is proposed. The IMU readings are used to estimate the location of horizon line in the image, which automatically adjusts the priors in the probabilistic semantic segmentation model. We derive the equations for projecting the horizon into images, propose an efficient optimization algorithm for the extended graphical model, and offer a practical IMU-camera-USV calibration procedure. Using an USV equipped with multiple synchronized sensors, we captured a new challenging multi-modal dataset, and annotated its images with water edge and obstacles. Experimental results show that the proposed algorithm significantly outperforms the state of the art, with nearly 30 % improvement in water-edge detection accuracy, an over 21 % reduction of false positive rate, an almost 60 % reduction of false negative rate, and an over 65 % increase of true positive rate, while its Matlab implementation runs in real-time.
منابع مشابه
A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملA Graphical Model for Rapid Obstacle Image-Map Estimation from Unmanned Surface Vehicles
Obstacle detection plays an important role in unmanned surface vehicles (USV). Continuous detection from images taken onboard the vessel poses a particular challenge due to the diversity of the environment and the obstacle appearance. An obstacle may be a floating piece of wood, a scuba diver, a pier, or some other part of a shoreline. In this paper we tackle this problem by proposing a new gra...
متن کاملFast and Reliable Obstacle Detection and Segmentation for Cross-country Navigation
Obstacle detection (OD) is one of the main components of the control system of autonomous vehicles. In the case of indoor/urban navigation, obstacles are typically defined as surface points that are higher than the ground plane. This characterisation, however, cannot be used in cross-country and unstructured environments, where the notion of "ground plane" is often not meaningful. A previous OD...
متن کاملStochastic performance modeling and evaluation of obstacle detectability with imaging range sensors
Statistical modeling and evaluation of the performance of obstacle detection systems for Unmanned Ground Vehicles (UGV's) is essential for the design, evaluation, and comparison of sensor systems. In this report, we address this issue for imaging range sensors by dividing the evaluation problem into two levels: quality of the range data itself and quality of the obstacle detection algorithms ap...
متن کاملFieldSAFE: Dataset for Obstacle Detection in Agriculture
In this paper, we present a multi-modal dataset for obstacle detection in agriculture. The dataset comprises approximately 2 h of raw sensor data from a tractor-mounted sensor system in a grass mowing scenario in Denmark, October 2016. Sensing modalities include stereo camera, thermal camera, web camera, 360 ∘ camera, LiDAR and radar, while precise localization is available from fused IMU and G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.07956 شماره
صفحات -
تاریخ انتشار 2018